(0–3 p.) A. Przemieszczanie się chłodnego i suchego powietrza w kierunku wyższych szerokości geograficznych. B. Unoszenie się nagrzanego, wilgotnego, lekkiego powietrza. C. Grawitacyjne opadanie powietrza. D. Powstanie strefy podwyższonego ciśnienia przy powierzchni Ziemi. E. Powstanie pasa obniżonego ciśnienia przy powierzchni Ziemi. 7.
Rodzaje chmur, nazwy oraz sposób powstawaniaLubisz spoglądać w niebo, bujasz czasem w obłokach? W takim razie na pewno zainteresują cię rodzaje chmur, ich nazwy czy sposób powstawania. Dowiesz się jakie są rodzaje chmur a także poznasz ich krótką charakterystykę oraz chmur w przyrodzie to z wielu względów fascynujący temat. Po pierwsze podział chmur może odbywać się na wielu płaszczyznach, chmury dzielą się ze względu na wysokość występowania, kształt w jaki się formują, budowę wewnętrzną czy sposób jakie są rodzaje chmur i jak nazywają się poszczególne typy jest kwestią już wiekową, ponieważ już w 1803 roku brytyjski meteorolog Luke Howard przygotował klasyfikację chmur, która po drobnych korektach obowiązuje do chmur ze względu na ich właściwości i budowęWysokość powstawaniaJeśli chodzi o nazwy chmur w podziale na wysokość ich występowania możemy podzielić je tylko na 3 grupyniskie (od 0 do 2 km nad ziemią) – do tej grupy zaliczamy chmury o nazwach Stratus, Stratocumulus oraz Nimbostratusśrednie (od 2 do 6 km nad ziemią) – nazwy chmur piętra średniego to Altostratus i Altocumuluswysokie (od 5 do 13 km nad ziemią) – typy chmur piętra wysokiego to Cirrostratus, Cirrocumulus oraz CirrusKształt chmury:kłębiaste – to chmury nieprzezroczyste, zwykle o kolorze białym, które przyjmują luźne formacje – każda z chmur wyraźnie oddziela się od pozostałych – niebo nie jest w pełni zasłonięte. Bardziej wypiętrzonym chmurom kłębiastym mogą towarzyszyć niewielkie opady deszczu. Typowy rodzaj chmury kłębiastej to – całkowicie lub prawie całkowicie przesłaniają niebo, zwykle przynoszą długotrwały, ale łagodny opad mżawki, lekkiego deszczu czy śniegu. Chmurą warstwową jest – chmury piętra wysokiego, sprawiają wrażenie niezwykle delikatnych włókien, pajęczych sieci czy kłaczków i obłoczków. Ten rodzaj chmur nie przynosi żadnych opadów. Typowym przedstawicielem chmur pierzastych jest wewnętrzna:chmury o budowie pionowej – to chmury, które osiągają największe grubości, czyli wysokość od podstawy chmury do jej górnej podstawy. Rozbudowują się w kierunku góra dół. Można powiedzieć, że grubość to po prostu wysokość chmury. W przypadku chmur o budowie pionowej wysokość może dochodzić nawet do 18 o budowie poziomej – to chmury, które rozbudowują się powstawania:falowe – ta nazwa chmur jest tym samym co chmura orograficzna. Ich powstawanie związane jest z występowaniem wysokich szczytów górskich. Powietrze, które natrafia na wierzchołek górski unosi się co powoduje ochłodzenie a w efekcie kondensację pary wodnej. Jest to charakterystyczny widok w Himalajach, gdzie po jednej stronie góry, w wietrzne dni tworzy się – chmury powstają za sprawą prądów wstępujących, które unoszą powietrze co powoduje kondensację pary wodnej i powstanie – związane z przemieszczaniem się frontów atmosferycznych, w wyniku zmiany temperatury lub ciśnienia powstają chmury, które przemieszczają się wraz z wędrującym chmur burzowych i deszczowychChmury można też podzielić ze względu na to czy i jakie opady powodują. Rodzaje chmur burzowych (deszczowych) to przede wszystkim: wszystkie chmury piętra średniego oraz niskiego o których przeczytasz więcej w opisie chmur deszczowych to takie chmury, które powodują wystąpienie opadów deszczu, gradu czy śniegu. Prawdopodobieństwo wystąpienia opadu zależne jest w dużej mierze od rodzaju chmury. W przypadku Altostratusów jest to zaledwie 2% szansy na opad, w przypadku chmur niskich 56%.Poniżej znajdują się szczegółowo opisane rodzaje chmur i ich są nazwy chmur po łacinie i po polsku?Nazwy chmur występują zawsze w 2 językach – krajowym oraz po łacinie. W Polsce oba rodzaje nazw funkcjonują obok siebie, często lista nazwy chmur po łacinie i w języku polskim poczynając od chmur piętra niskiego po te występujące najwyżej:Cumulonimbus – Kłębiaste deszczoweCumulus – KłębiasteNimbostratus – Warstwowe deszczoweStratus – Niskie warstwoweStratocumulus – Kłębiasto-warstwoweAltostratus – Średnie warstwoweAltocumulus – Średnie kłębiasteCirrostratus – Warstwowo-pierzasteCirrocumulus – Kłębiasto-pierzasteCirrus – PierzasteA zatem znamy już łacińskie nazwy chmur, teraz pora przyjrzeć się nieco bliżej ich (Cb) – chmury kłębiaste deszczowe Ogromne, bardzo gęste chmury o budowie pionowej, które swoim wyglądem mogą przypominać górę albo wielką wieżę. Wysokość Cumulonimbusów może dochodzić nawet do 18 km. Dolna część jest zbudowana z kropel wody, a górna z kryształków rodzaj chmur może być źródłem bardzo gwałtownych opadów, którym często towarzyszą wyładowania atmosferyczne. Z takich chmur możemy spodziewać się ulewnego, ale krótkotrwałego deszczu, śniegu czy gradu. Charakterystycznym zjawiskiem jakie towarzyszy tym chmurom jest silny wiatr (szkwał), którego nadejście poprzedza nomenklaturze lotniczej ten typ chmur nazywany jest charlie bravo, w ten sposób określa się je podczas lotniczej komunikacji (Cu) – Kłębiaste Zazwyczaj występujące pojedynczo chmury o budowie pionowej, których podstawa jest bardzo płaska i przyjmuje szary kolor, podczas, gdy góra przypomina główkę kalafiora, oświetlona przez promienie słońca jest śnieżnobiała. Wysokość chmury nie przekracza standardowo 2,5 km, przez co cumulusy zbudowane są niemal wyłącznie z kropel bardziej wypiętrzone cumulusy przynoszą opady deszczu, zazwyczaj bardzo słabe. Charakterystyczną cechą tych chmur jest duża dynamika jeśli chodzi o zmianę kształtu. Mały cumulus może “żyć” zaledwie 10 (Ns) – Warstwowe deszczowePrzyjmuje formę warstwową, czyli szczelnie lub częściowo zakrywa niebo, przybiera kolor zazwyczaj szary lub ciemnoszary. Chmury tego typu zbudowane są z kropel wody i kryształków lodu, a opad, który im towarzyszy jest ciągły. Grubość nimbostratusów dochodzi do 6 km, co skutecznie blokuje promienie słońca przed dotarciem na (St) – Niskie warstwoweChmura przyjmująca formę jednolitej warstwy koloru białego lub szarego znajdujące się stosunkowo nisko, bo ok. 600 m nad ziemią. Opad powstający z chmur o nazwie Stratus to standardowo mżawka lub bardzo lekki – Kłębiasto-warstwowe Chmura niska w formie szarej warstwy lub płatów o płaskiej budowie. Stratocumulusy składają się przeważnie z kropel wody i mogą powodować niewielkie opady typ chmur pokrywa statystycznie 20% powierzchni globu, co czyni go dominującą formacją chmur na Ziemi. Największe Stratocumulusy występują nad Kalifornią, Peru czy (As) – Średnie warstwowe Gruba i gęsta warstwa chmur w kolorze szarym lub niebieskawym, która częściowo przepuszcza promienie słoneczne – efekt jest podobny do matowego szkła. Często tego typu chmury przykrywają całe niebo, czemu może towarzyszyć lekki opad deszczu bądź śniegu, rzadziej (Ac) – Średnie kłębiaste Chmury zaliczane do piętra średniego, składające się z białych lub szarych obłoków, ułożonych w dość regularne warstwy i formacje. Choć chmury tego typu są zbudowane z kropel wody nie zalicza się ich do chmur zakrywać całe niebo lub tylko jego część, jeśli chodzi o grubość to również może być dość różna – od niewielkie, która przepuszcza promienie słoneczne po grubą, (Cs) – Warstwowo-pierzaste Ten rodzaj chmur przywodzi na myśl bardzo lekką, mglistą, częściowo przejrzystą zasłonę. Może być włóknista, albo gładka, przy czym zawsze choć część promieni słonecznych dociera do ziemi. Jest to chmura piętra wysokiego, a więc składa się z kryształków lodu i nie daje żadnych powoduje tzw. zjawisko halo, czyli powstawanie białej lub tęczowej poświaty wokół słońca bądź (Cc) – Kłębiasto-pierzaste Przyjmują postać małych, płatków lub kłębków o dużym zagęszczeniu, tworząc coś na wzór luźnego dywany z owczej wełny. Stąd wzięła się też potoczna nazwa “baranki”.Cirrocumulusy mogą dawać opady, jednak jedynie w postaci virga – opadu, który nie dociera do powierzchni (Ci) – Pierzaste Chmury wysokie zbudowane z lodowych kryształków, która występuje na wysokości od 6 do 12 km, wysokość występowania zależy od strefy klimatycznej. Im zimniej tym Cirrusy mogą występować bliżej powierzchni ziemi. Tego typu chmury sprawiają wrażenie bardzo delikatnych, niczym pajęczyna, lekki obłoczek czy rozciągnięta nie tworzą żadnych opadów, w minimalnym stopniu przesłaniają promienie słoneczne.
Tą drogą woda z atmosfery powraca na powierzchnię Ziemi. Jeżeli kondensacja zachodzi bezpośrednio przy powierzchni Ziemi, wówczas produkty jej nazywają się mgłami. Zasadniczej różnicy w budowie chmur i mgieł nie ma. W górach spotyka się takie przypadki, że chmura tworzy się na samym zboczu górskim.
Jak się nazywa chmura przy powieszhni ziemi Myślę że to po prostu mgła Chmura przy powierzchni ziemi -MGŁA
Według definicji kras albo też procesy krasowe lub krasowienie, to wszelkie procesy rozpuszczania skał przez wody powierzchniowe i podziemne, jeden z rodzajów wietrzenia chemicznego. Krasowieniu podlegają skały krasowiejące: przede wszystkim wapienie, a także dolomity, margle, gips, anhydryt, a także halit, czyli potocznie sól kamienna.
Chmura burzowa — groźna królowa chmur Od naszego korespondenta w Australii WIELU ludzi od dziecka fascynuje się chmurami. Pewien 80-latek wspomina, jak w dzieciństwie często kładł się na trawie i obserwował chmury „paradujące po niebie”. Pamięta, że nieraz się zastanawiał, z czego są zrobione. Może z waty? Dlaczego każda wyglądała inaczej? Ta przypominała żaglówkę, tamta konia stającego dęba, a jeszcze inna — pęczniejący zamek. Płynąc po niebie, co chwila zmieniały kształty i rozmiary, nieustannie podniecając dziecięcą wyobraźnię. Człowiek ów mówi, że do dzisiaj lubi wpatrywać się w chmury, które wydają się „bawić z nim w zgadywankę”. Niewykluczone, że i tobie sprawia przyjemność ta prosta czynność. Największe jednak wrażenie robi chyba najgroźniejsza spośród chmur — ta, która umie „mówić”. Jest to cumulonimbus, czyli chmura burzowa. Ciemna i złowroga, może osiągnąć wysokość 15 kilometrów, a niekiedy piętrzy się jeszcze wyżej. I to właśnie ona przynosi burzę. Gdy tak rośnie w górę, skrzy się czasem od błyskawic i wydaje ostrzegawcze grzmoty. Na nocnym niebie potrafi stworzyć oszałamiające widowisko z takimi efektami świetlnymi i dźwiękowymi, że bledną przy nim wszelkie pokazy sztucznych ogni, wykonanych przez człowieka. Wyrzucając z siebie wodę i grad, przesuwa się dalej, a na ziemi, często wcześniej wyschniętej, pozostawia świeży zapach czystego deszczu. Jak powstaje burza W dzisiejszych czasach człowiek może oglądać Ziemię z kosmosu. Widać stamtąd, że sporą jej część otula zasłona z chmur. Jak informuje publicysta Fred Hapgood, „w dowolnej chwili [chmury] przysłaniają połowę powierzchni naszego globu, czyli 250 milionów kilometrów kwadratowych — spłaszczone, okrągłe, napęczniałe, włókniste, koronkowe, puszyste, o najróżniejszej jasności i przejrzystości, tworzą się na całym świecie, rosną, wędrują i zanikają”. Część tej masy chmur stanowią chmury burzowe — co roku na ziemi występuje do 15 000 000 burz, a w każdej chwili trwa ich mniej więcej 2000. Burza powstaje wtedy, gdy gęste i zimne powietrze znajdzie się nad wilgotnym, o mniejszej gęstości. Wówczas ciepło słoneczne, front atmosferyczny lub wzniesienie terenu może spowodować, że ciepłe i wilgotne powietrze zacznie się wznosić do góry i przenikać przez warstwę chłodnego. Tworzą się prądy powietrzne, a energia cieplna zgromadzona w powietrzu oraz parze wodnej zamienia się w wiatr i energię elektryczną. Warunki atmosferyczne najbardziej sprzyjające powstawaniu burzy panują na mniejszych szerokościach geograficznych. Dlatego Ameryka Południowa i Afryka to kontynenty o najwyższej częstotliwości burz, a Afrykę Środkową oraz Indonezję od dawna uważa się za rejony, gdzie występują one najczęściej. Rekord — 242 dni burzowe w roku — odnotowano w Kampali w Ugandzie. Niemniej burze występują również w wielu innych rejonach ziemi. Podniebne fajerwerki Dwie znane wszystkim cechy burzy to grzmoty i błyskawice. Ale co wywołuje te spektakularne, często przerażające zjawiska? Błyskawica to po prostu zjawisko świetlne towarzyszące wyładowaniu elektrycznemu (piorunowi), które zachodzi wtedy, gdy różnica potencjałów między dwoma obszarami przeciwnie naładowanymi jest na tyle duża, że następuje przebicie izolatora, jakim jest powietrze. Wyładowania mogą zachodzić wewnątrz chmury, między chmurami albo między chmurami a ziemią. W ich wyniku powietrze na moment ogrzewa się do niewiarygodnie wysokiej temperatury, sięgającej aż 30 000°C. Wyróżnia się kilka typów błyskawic, między innymi wstęgową, liniową i płaską. Błyskawica wstęgowa jest widoczna w postaci wyraźnego zygzaka. Jeżeli ma on jedno lub kilka rozgałęzień, błyskawica nosi nazwę liniowej. Jeśli natomiast wyładowanie następuje wewnątrz chmury, mówi się o błyskawicy płaskiej. Zdaniem specjalistów większość błyskawic obserwujemy przy wyładowaniach między chmurami a ziemią. Pioruny wyrządzają szkody ludziom i zwierzętom, powodując obrażenia, a nawet śmierć. Najbardziej zagrożone są osoby na plażach oraz polach golfowych i uprawnych, gdyż nie mają gdzie się schronić przed wyładowaniami elektrycznymi (patrz ramka na stronie 15). W rzeczywistości tylko około 30 procent ludzi rażonych piorunem umiera. Rzadko też dochodzi do trwałych obrażeń, jeśli szybko zostanie udzielona pierwsza pomoc. Jednakże wbrew rozpowszechnionemu przekonaniu piorun może trafić kilka razy w to samo miejsce i faktycznie często tak się dzieje. Pioruny wzniecają wiele pożarów obejmujących olbrzymie połacie ziemi. W USA wywołują średnio co dziesiąty pożar lasu. W ich wyniku spaleniu ulega obszar, który stanowi 35 procent wszystkich terenów leśnych strawionych w tym kraju przez ogień. Ale uderzenia piorunów bywają też pożyteczne. Dla lasów na przykład są korzystne pod kilkoma względami. Wywołują pożary powodujące zubożenie poszycia, co zmniejsza ryzyko bardziej niszczycielskich pożarów, obejmujących korony drzew. Ponadto pioruny wywierają dobroczynny wpływ na wolny azot, który w postaci gazowej nie może być wykorzystany przez rośliny. W wyniku wyładowań powstają związki azotu, niezbędne do budowy tkanek roślinnych oraz do rozwoju nasion, a te z kolei dostarczają białek potrzebnych do życia zwierzętom. Ocenia się, że od 30 do 50 procent tlenków azotu obecnych w deszczu powstaje dzięki piorunom i w ten sam sposób co roku na całej ziemi tworzy się 30 milionów ton azotu związanego. Największa korzyść z burzy Podczas burzy w krótkim czasie spada ogromna ilość deszczu. Dzieje się tak głównie dlatego, że silny prąd wstępujący unosi wielkie masy wody, a potem raptownie je uwalnia. Pomiary wskazują, że w ciągu godziny nawałnicy może spaść 200 milimetrów deszczu. Rzecz jasna, tak obfite opady mają również złe strony. Jeżeli burza przemieszcza się wolno, większość deszczu spada na stosunkowo niewielki obszar — może dojść do tak zwanego oberwania chmury. Spływ powierzchniowy powoduje wówczas wezbranie strumieni i rzek. Jak się szacuje, w USA około jednej trzeciej szkód powstałych w wyniku wszystkich powodzi jest rezultatem ulewnych opadów towarzyszących burzom. Jednakże deszcz z chmury burzowej przynosi liczne korzyści. Wielkie ilości wody dostają się do gleby oraz do naturalnych i sztucznych zbiorników wodnych. Badania wskazują, że w niektórych rejonach deszcze burzowe stanowią od 50 do 70 procent wszystkich opadów, są więc tam niezbędne do życia. A co z gradem? Burze bywają bardzo szkodliwe, gdyż często towarzyszą im intensywne opady gradu. Tworzy się on z kropelek deszczu — unoszonych i opadających z prądem wstępującym i zstępującym — które zamarzają, a następnie zwiększają swe rozmiary. Krążą niesamowite opowieści na temat wielkości i wagi gradzin. Podobno w Niemczech w 1925 roku spadła bryła o wymiarach: 26 na 14 i na 12 centymetrów. Ważyła około 2 kilogramów. Jedna z największych gradzin, jaką zauważono w USA, spadła w 1970 roku w stanie Kansas. W najszerszym miejscu jej obwód wynosił 44 centymetry i ważyła blisko 0,8 kilograma. Tak olbrzymia bryła spadająca z wysokich chmur może zabić człowieka. Na szczęście grad jest zazwyczaj znacznie mniejszy i raczej bywa przyczyną kłopotów niż śmierci. Poza tym burze gradowe wyrządzają szkody na stosunkowo niewielkim obszarze. Jednakże straty, jakie rolnictwo na świecie ponosi co roku z powodu gradu, ocenia się na setki milionów dolarów. Burze a trąby powietrzne Chyba najbardziej niebezpiecznym zjawiskiem związanym z burzą są trąby powietrzne. Powstają one tylko podczas burz, choć nie towarzyszą każdej. Trąba powietrzna to silnie wirująca, wąska kolumna powietrza o średnicy przeciętnie kilkuset metrów, ciągnąca się od chmury burzowej do ziemi. W najgwałtowniejszych trąbach prędkość wiatru może przekroczyć 400 — 500 kilometrów na godzinę. Potężne wiry połączone z prądem wstępującym w środku leja potrafią przewracać budynki i porywać w powietrze ich części, wyrządzając olbrzymie szkody. Trąby powietrzne występują w wielu krajach. Niebezpieczne — choć z pozoru nie tak groźne — są również wiatry wiejące prosto, związane na przykład z prądami zstępującymi. Prądy te potrafią wywołać niszczycielskie wiatry tuż przy powierzchni ziemi lub nieco wyżej, pędzące z prędkością do 150 kilometrów na godzinę. Niekiedy szczególnie silny prąd zstępujący powoduje na niewielkim obszarze wystąpienie krótkotrwałego, lecz bardziej porywistego wiatru, który może osiągnąć prędkość ponad 200 kilometrów na godzinę. Jak widać, burzy nie wolno lekceważyć i należy zdawać sobie sprawę ze związanych z nią niebezpieczeństw. Zjawisko to jest jednym z aspektów dzieła stwórczego, o którym musimy się jeszcze dużo dowiedzieć. [Ramka i ilustracja na stronie 15] Jak się chronić przed piorunami Australijski Instytut Ratownictwa proponuje stosowanie podczas burzy następujących środków ostrożności. Ochrona na wolnym powietrzu ◼ Poszukaj schronienia w samochodzie z trwałym dachem bądź w budynku; unikaj małych obiektów, płóciennych namiotów i drzew rosnących pojedynczo lub w niewielkich kępach. ◼ Jeżeli przebywasz z dala od jakiegokolwiek schronienia, przykucnij (sam) ze złączonymi stopami, najlepiej w zagłębieniu ziemi, i zdejmij z siebie wszelkie metalowe przedmioty. Nie kładź się, ale postaraj się nie stanowić najwyższego obiektu na terenie. ◼ Gdyby unosiły ci się włosy na głowie albo słyszałbyś syczenie dobiegające na przykład z pobliskich skał czy ogrodzeń, natychmiast przejdź w inne miejsce. ◼ Nie puszczaj latawców ani modeli samolotów, połączonych metalowymi przewodami z urządzeniami do sterowania. ◼ Jeśli jesteś na dworze, nie trzymaj w ręku długich bądź metalowych przedmiotów, jak wędka, parasolka czy kij golfowy. ◼ Nie dotykaj ani nie przebywaj w pobliżu metalowych konstrukcji, ogrodzeń z drutu albo metalowych linek do suszenia bielizny. ◼ Zejdź z konia, roweru, opuść pojazd nie mający dachu. ◼ Gdybyś jechał samochodem, zwolnij albo zaparkuj z dala od wysokich obiektów, takich jak drzewa albo słupy telegraficzne. Możesz pozostać w samochodzie lub przyczepie z twardym dachem, ale nie dotykaj metalowych części ani się o nie nie opieraj. ◼ Jeśli akurat pływasz bądź uprawiasz surfing, natychmiast wyjdź z wody i poszukaj schronienia. ◼ Jeżeli płyniesz łodzią, jak najszybciej dobij do brzegu. Gdyby to było niebezpieczne, poszukaj schronienia pod jakimś wyższym obiektem, na przykład mostem lub falochronem. Dopilnuj, by maszt i liny były odpowiednio uziemione. Ochrona w pomieszczeniach ◼ Nie zbliżaj się do okien, urządzeń elektrycznych, rur i innych metalowych sprzętów. ◼ Staraj się nie korzystać z telefonu. Gdyby jednak zaszła taka konieczność, niech rozmowa będzie jak najkrótsza. ◼ Gdy nadciąga burza, wyłącz z sieci odbiorniki radiowe i telewizyjne oraz odłącz anteny znajdujące się na zewnątrz. Odłącz też kabel od modemu komputera i wyłącz źródła prądu. Następnie trzymaj się z daleka od urządzeń elektrycznych. [Prawa własności] Na podstawie publikacji Severe Storms: Facts, Warnings and Protection.
Proces ten umożliwia zatrzymanie przy powierzchni Ziemi części ciepła otrzymanego z promieniowaniem słonecznym, tak że jej średnia temperatura wynosi obecnie 15 C. Brak gazów szklarniowych pozwoliłby na uchodzenie energii cieplnej, a średnia temperatura spadałaby do -20 C. Zamarzłyby oceany i życie uległoby zagładzie.
Scud cloud na Mazurach. Chmura dotknęła ziemi! Czym jest to nietypowe zjawisko? W sezonie wiosenno-letnim w województwie warmińsko-mazurskim występuje wiele spektakularnych zjawisk. Nietypowy widok można było obserwować w miniony weekend w okolicach Kętrzyna. Chmura, wyglądem przypominająca trąbę powietrzną, niemal dotknęła powierzchni ziemi! Jak to możliwe? Szczegóły w materiale poniżej. Mazurscy Łowcy Burz opublikowali w sieci nagranie z niezwykłym zjawiskiem meteorologicznym. W okolicach Kętrzyna mieszkańcy mogli obserwować chmurę zwaną "scud cloud". Co to takiego? Jak powstaje? Czy powoduje zniszczenia i jest groźna dla ludzi? - Chmura "scud cloud" formuje się nad obszarami o bardzo dużym, lokalnym nagromadzeniu wilgoci przy jednoczesnym występowaniu niskiego poziomu kondensacji pary wodnej. Taka sytuacja występuje przede wszystkim w obrębie oddziaływania chłodnego i wilgotnego prądu zstępującego w chmurze Cumulonimbus - informują Mazurscy Łowcy Burz. WIDEO ZOBACZYSZ >>TUTAJ<< To ciekawe zjawisko obserwowane było na Mazurach w minioną sobotę (29 maja) między godziną 13 a 14. - Pierwsze przelotne opady występowały jednak w tym obszarze już około godziny 11:00, a więc zasiliły już ten obszar w pewną ilość wilgoci, a kolejna porcja pojawiła się właśnie w godzinach popołudniowych. Wyraźniejszy spadek temperatury w zasięgu prądu zstępującego i bardzo duże nagromadzenie wilgoci w rejonie lasu po dwóch porcjach opadów doprowadziły do tego, że kondensacja pary wodnej, prowadząca do formowania się chmury, następowała praktycznie z powierzchni ziemi (ochładzanie się powietrza powodowało szybsze jego nasycenie) - tłumaczą Mazurscy Łowcy Burz i zapewniają, że takie zjawisko nie powoduje zniszczeń i nie jest groźne. Raport z anteny Sonda Czy masz już plany na wakacje? Tak Nie Nie wyjeżdżam na wakacje
Prawo ochrony środowiska (t.j.: Dz. U. z 2021 r. poz. 1973) historyczne zanieczyszczenie powierzchni ziem i - zanieczyszczenie powierzchni ziemi, które zaistniało przed dniem 30 kwietnia 2007 r. lub wynika z działalności, która została zakończona przed dniem 30 kwietnia 2007 r.; rozumie się przez to także szkodę w środowisku w
Teoria Hydrologia i locja Chmury Hydrologia i locja Chmury widzimy codziennie, czasem przykrywaj całe niebo, innym razem ledwie są widoczne, potrafią być śnieżnobiałe lub ciemnogranatowe, w lecie przynoszą śnieg w zimie deszcz. Wyróżniamy kilka rodzajów chmur, warto poznać ich zachowanie, bo często pozwala to przewidywać pogodę. Cirrus (Ci) Cirrus (Ci) Chmura pierzasta w kształcie białych włókien, nitek, ławic lub wąskich pasm o jedwabistym wyglądzie. Najczęściej występują w postaci cienkich włókien, prawie prostolinijnych, nieregularnych zagiętych lub poplątanych chaotycznie ze sobą. Niekiedy mają charakterystyczne zagięcia do góry w kształcie haczyków. Występują też w ławicach tak gęstych, że wydają się szarawe, mimo iż chmury cirrus są bardziej białe niż jakiekolwiek inne, znajdujące się w tej samej części nieba. Ten rodzaj chmur może nawet lekko zasłonić Słońce, rozmywać jego zarysy, a czasem zasłonić zupełnie. Człony chmur cirrus są niekiedy ułożone w szerokie równoległe pasma, które wydają się być zbieżne ku widnokręgowi. Rzadziej chmury cirrus ukazują się w kształcie małych, zaokrąglonych kłaczków mniej lub bardziej rozrzuconych, lub w postaci zaokrąglonych wieżyczek o wspólnej podstawie. Gdy Słońce zachodzi, chmury cirrus, położone wysoko na niebie, zmieniają barwę na żółtą, później na różową i w końcu na szarą. O wschodzie kolejność barw jest odwrotna. Cirrus składa się z małych i znacznie rozproszonych kryształków lodu, sunie po niebie majestatycznie, na oko powoli, w rzeczywistości z szybkością 70 km/h i więcej. Cirrus powoduje opady, które nigdy nie osiągają powierzchni ziemi. Cumulonimbus (Cb) Cumulonimbus (Cb) Chmura kłębiasta, deszczowa występuje jako potężna chmura o dużej rozciągłości pionowej w kształcie góry lub wielkich wież. Przynajmniej część jej wierzchołka jest zazwyczaj gładka, włóknista lub prążkowana i prawie spłaszczona. Część ta rozpościera się w kształcie kowadła lub rozległego pióropusza. Poniżej podstawy, często ciemnej, niejednokrotnie występują niskie, postrzępione chmury połączone z podstawą lub oddzielone od niej. chmury cumulonimbus mogą występować jako odosobnione lub w postaci długiego szeregu połączonych chmur, przypominającego rozległą ścianę. Górna część chmury jest niekiedy połączona z chmurami altostratus i nimostratus. U dołu mogą występować zwisające wypukłości (mamma) i smugi opadów deszczu (virga). Chmury cumulonimbus składają się z kropelek wody, a w górnej wypiętrzonej części również z kryształków lodu, zawiera też często płatki śniegu, krupy lub grad. Krople wody i deszczu mogą być silnie przechłodzone. Chmura jest zwiastunem frontu zimnego, przynosząc obfite acz przelotne opady deszczu, śniegu lub gradu, którym mogą towarzyszyć grzmoty i błyskawice. Towarzyszą im często silne szkwały. Cumulus (Cu) Cumulus (Cu) Chmura kłębiasta, występuje jako oddzielne, na ogół gęste chmury o ostrych zarysach, rozwijające się w kierunku pionowym, w kształcie pagórków, kopuł wież, których górna, początkująca część przypomina często kalafior. Chmury cumulus mogą występować jednocześnie w różnych stadiach pionowego rozwoju, a więc mogą mieć również małą rozciągłość pionową i wyglądać jak spłaszczone . Niekiedy mają bardzo postrzępione brzegi, przy czym ich zarysy ulegają szybkim zmianom. Chmury o umiarkowanym pionowym rozwoju ustawiają się niekiedy w szeregi prawie równoległe w kierunku wiatru. Oświetlane przez Słońce partie chmur są przeważnie lśniącą białe. Podstawa ich jest stosunkowo ciemna i prawie pozioma. Cumulus składa się z głównie z kropelek wody, a przy niskich temperaturach także z kryształków lodu. Cumulusy przynoszą często opady. Stratus (St) Stratus (St) Chmura niska warstwowa, na ogół szara warstwa chmur o dobrze zaznaczonej dolnej powierzchni, która może być sfalowana. Czasami jest obserwowana w postaci fragmentów o zmieniających się wymiarach i jasności, mniej lub bardziej połączonych, bądź też w postaci strzępów szybko zmieniających kształt i jasność., czy postrzępionych ławic. Występuje najczęściej jako mglista, szara i prawie jednostajna warstwa, mająca tak niską podstawę, że zasłania wierzchołki wzgórz i wysokich budowli. Chmury stratus może być tak cienka, że zarysy Słońca i Księżyca są przez nią dobrze widoczne. Innym razem przybierają groźny wygląd. Stratus składa się z kropelek wody, czasami pomieszanej z igiełkami lodu lub ziarnistym śniegiem. Przynosi na ogół długotrwałe opady, mżawkę, niekiedy słupki lodu lub ziarnisty śnieg. Stratocumulus (Sc) Stratocumulus (Sc) Chmura kłębiasta, warstwowa występuje jako szara lub biaława ławica warstw chmur, mająca prawie zawsze ciemne części, złożona z zaokrąglonych brył, walców itp., połączonych ze sobą lub oddzielonych i nie mających włóknistego wyglądu. chmury stratocumulus składają się z członów podobnych do członów altocumulus, lecz położonych niżej, więc pozornie większych. Wielkość i grubość chmur stratocumulus zmienia się w szerokich granicach. Niekiedy człony chmur mają postać walców, oddzielonych pasmami czystego nieba. Statocumulus składa się z małych kropelek wody, pomieszanej często z miękką krupą lub płatkami śniegu. Chmury stratocumulus dają niekiedy opad o słabym natężeniu w postaci deszczu, śniegu lub krup śnieżnych. Nimbostratus (Nb) Nimbostratus (Nb) Szara warstwa chmur, często ciemna wręcz czarna, o wyglądzie rozmytym wskutek opadów ciągłego deszczu lub śniegu, który w większości dochodzi do Ziemi. Dolna powierzchnia chmury nimbostatus jest często całkowicie lub częściowo zasłonięta przez niskie, postrzępione chmury, które szybko zmieniają kształty, początkowo są złożone z oddzielnych jednostek, potem mogą łączyć się ze sobą i chmurą nimbostarus. Chmury nimbostartus składają się z kropelek wody (niekiedy przechłodzonej) oraz kryształków i płatków śniegu. Jest ona tak gruba, że całkowicie przesłania Słońce. Znajduje się od 1 km od powierzchni i potrafi się tak ciągnąć do 7 km. Opad towarzyszący, czyli śnieg lub deszcz, ma najczęściej charakter ciągły. Altostratus (As) Altostratus (As) Chmura średnia warstwowa, występująca jako płat lub warstwa chmur szarawych lub niebieskawych o wyglądzie prążkowym, włóknistym lub jednolitym, pokrywająca niebo całkowicie lub częściowo. Miejscami warstwa ta jest tak cienka, że słońce jest widoczne, jak przez matowe szkło. Chmury altostratus charakteryzuje się prawie zawsze dużą rozciągłość pozioma (do kilkuset kilometrów) i pionowa (do kilku kilometrów). Mogą składać się z dwóch lub więcej warstw ułożonych na różnych poziomach, niekiedy połączonych ze sobą. Altostratus składa się z kropelek wody w części dolnej i kryształków lodu w części górnej a w części środkowej z mieszaniny tych składników. Altostratus daje opady, które można obserwować w postaci smugi poniżej jej podstawy (tzw. virga), wskutek czego dolna powierzchnia chmury może przybrać wygląd postrzępiony. Gdy opady sięgają powierzchni Ziemi, mają one zwykle charakter ciągły i występują w postaci deszczu, śniegu lub ziaren lodowych. Altocumulus (Ac) Altocumulus (Ac) Chmura średnia, kłębiasta, biała lub szara warstwa albo ławica chmur, na ogół wykazująca cienie, złożona z rozległych płatów, wydłużonych równoległych walców itp.,które mogą być rozdzielone pasmami czystego nieba. Płaty chmur altocumulus są często obserwowane równocześnie na dwóch lub więcej poziomach. Chmury te występują również w postaci ławic, mających kształt soczewki lub migdała, często bardzo wydłużonych, o wyraźnych zarysach. Pewne rodzaje chmur altocumulus przybierają kształty małych odosobnionych kłaczków, których dolne części są nieco postrzępione, chmurom tym towarzyszą często włókniste smugi. Również rzadko altocumulus ma wygląd szeregu wieżyczek wyrastających ze wspólnej podstawy. Chmury altocumulus są zbudowane zasadniczo z kropelek wody, chociaż przy niskich temperaturach występują w niej również kryształki lodu. Cirrostratus (Cs) Cirrostratus (Cs) Chmura wartswowo-pierzasta występująca jako przejrzysta biaława zasłona z chmur o włóknistym lub gładkim wyglądzie, pokrywająca niebo całkowicie lub częściowo. Zasłona chmur cirristratus może być prążkowana lub przybierać wygląd mglisty. Brzeg chmur jest niekiedy ostro zarysowany, lecz częściej zakończony chmurami cirrus na kształt frędzli. Chmury cirrostratus nigdy nie są na tyle gęste, by przeszkodzić w rzucaniu cieni przez przedmioty znajdujące się na powierzchni Ziemi, z wyjątkiem sytuacji, gdy Słońce jest nisko nad widnokręgiem. Uwagi dotyczące barw chmur cirrus są dłużej mierze słuszne dla chmur cirrostratus. Cirrostratusy zbudowane są pełnych, małych kryształków lodu, znacznie rozproszonych . Są to chmury która znajdują się dość daleko od powierzchni Ziemi tzn. około 8-10 km. Cirrocumulus (Cc) Cirrocumulus (Cc) Chmura kłębiasto-pierzasta, występuje w postaci cienkiej białej ławicy, płat lub warstw chmur bez cieni, złożona z małych członów połączonych ze sobą lub oddzielonych w kształcie ziaren, zmarszczek. Płaty chmur wykazują jeden lub dwa kierunki sfalowania. czasem płaty mogą mieć zaokrąglone przerwy, rozmieszczone dość regularnie, tak że chmury przypominają sieć lub plaster miodu. Chmury cirrocumulus są zawsze na tyle przejrzyste, że umożliwiają określenie położenia Słońca i Księżyca. Składają się z małych kryształków lodu lub silnie przechłodzonych kropel wody albo mieszaniny tych składników.
Chmury – podział, charakterystyka. Chmura to skupisko bardzo małych kropel wody lub kryształków lodu, powstałe wskutek kondensacji (zamiany wody w parę wodną) lub resublimacji (zamianie pary wodnej w wodę) pary wodnej. Krople za pomocą prądów wznoszących krążą po chmurze, łącząc się z innymi małymi kropelkami.Człowiek spoglądał na chmury od chwili, gdy zszedł z drzewa na ziemię, a może i jeszcze wcześniej. Często pogoda była decydującym elementem przetrwania, więc jej przewidywanie mogło stanowić o losach grupy, watahy czy plemienia. Dla lepszego uporządkowania wiedzy o chmurach zaczęto je klasyfikować, dzielić, grupować, a przede wszystkim opisywać. Tekst i zdjęcia Marek Zwierz Zanim chmury pojawiły się w naukowych publikacjach musiało minąć jednak sporo czasu. Pierwsza praca „O formach chmur” ukazała się w 1802 roku w Annałach Meteorologicznych Republiki Francuskiej. Równolegle i niezależnie brytyjski aptekarz, Luke Howard, przedstawił pierwszą i do dzisiaj aktualną klasyfikację chmur – cirrus, stratus i cumulus oraz ich kombinacje jak np. cirrostratus lub stratocumulus. Chyba najnowsze dzieło z tej dziedziny to raporty końcowe z posiedzeń komisji do spraw rewizji Międzynarodowego Atlasu Chmur z lat 2013-2016. To z tego okresu pochodziły doniesienia prasowe o dodaniu nowych rodzajów chmur do rejestru. Międzynarodowy Atlas Chmur składa się z dwóch tomów. Pierwszy to 180 stronicowy Manual Obserwacji Chmur i Innych Meteorów. W meteorologii meteorami, a dokładniej hydrometeorami, nazywane są opady wody w każdej postaci od mgły przez deszcz aż po śnieg i grad. W drugim tomie podane są przykłady różnych chmur i zjawisk meteorologicznych. Obowiązujący aktualnie Atlas Chmur jest po prostu serwisem internetowym. Ludzie koniecznie chcą wszystko segregować i szufladkować, a przyroda żadnym granicom nie chce się poddawać. Przykładem niech będzie tutaj choćby piętrowy podział chmur. Ziemia nie jest okrągła. To znaczy Ziemia nie jest idealną kulą. W przybliżeniu ma kształt kuli spłaszczonej na biegunach. Także atmosfera nie jest rozłożona na jej powierzchni równomiernie. Na biegunach jest cieńsza, a w okolicy równika najgrubsza. Już choćby z tego powodu nie można ustalić jednoznacznych granic dla poszczególnych pięter chmur. Mimo tych trudności sklasyfikowano trzy piętra chmur. Najniższe zaczyna się na powierzchni Ziemi i dochodzi do wysokości dwóch kilometrów. To chmury niskie. Chmury piętra średniego zaczynają się na wysokości dwóch kilometrów, ale określenie ich górnej granicy nie jest już takie proste. W średnich szerokościach geograficznych, do których zalicza się Polska i Bałtyk, granica ta przebiega na wysokości 7 km. W rejonach polarnych jest dużo niższa i wynosi 4 km. W tropikach warstwa ta sięga do 8 km. W ten sposób już mamy zróżnicowaną dolną granicę chmur wysokich. Sięgają one do górnej granicy troposfery, czyli do 8 km w okolicach podbiegunowych, do 13 km w średnich szerokościach i do 18 km w tropikach. Oczywiście te wszystkie wysokości należy uzupełnić słówkiem „około” i jak wszystkie podziały w przyrodzie nie wyczerpują one całej palety możliwości. Na przykład obłoki iryzujące występują na wysokości 20 – 30 km, ale nie są dla nas, żeglarzy istotne, albowiem nie mają bezpośredniego wpływu na interesująca nas pogodę na powierzchni Ziemi. To tytułem wstępu. Chociaż przyroda tego nie lubi, spróbujmy nieco uporządkować naszą wiedzę o chmurach. Jak już wspomnieliśmy, chmury dzielimy na niskie, średnie i wysoki. W sumie wyróżniono ich dziesięć rodzajów. Chmury niskie to Stratus, Stratocumulus, Cumulus i Cumulonimbus Chmury średnie to Altocumulus, Altostratus i Nimbostratus. Chmury wysokie to Cirrus, Cirrocumulus i Cirrostratus. RodzajGatunekOdmiana(w zależności od częstotliwości występowania)(w zależności od częstotliwości występowania)CirrusfibratusuncinusspissatuscastellanusfloccusintortusradiatusvertebratusduplicatusCirrocumulusstratiformislenticulariscastellanusfloccusundulatuslacunosusCirrostratusfibratusnebulosusduplicatusundulatusAltocumulusstratiformislenticulariscastellanusfloccusvolutustranslucidusperlucidusopacusduplicatusundulatusradiatuslacunosusAltostratus–translucidusopacusduplicatusundulatusradiatusNimbostratus––StratocumulusstratiformislenticulariscastellanusfloccusvolutustranslucidusperlucidusopacusduplicatusundulatusradiatuslacunosusStratusnebulosusfractusopacustranslucidusundulatusCumulushumilismediocriscongestusfractusradiatusCumulonimbuscalvuscapillatus–Fragment tabeli ze strony WMO – World Meteorological Organisation Nie przejmujmy się przytoczonymi tu łacińskimi nazwami. Po prostu w naukach przyrodniczych gatunki i rodzaje są nazywane w tym języku. Znaczenie łacińskich nazw będę starał się wyjaśnić przy opisie poszczególnych chmur i ich zdjęć. Jeszcze kilka słów o obserwacji chmur. Obserwacja także jest opisana przez WMO, a przynajmniej są oficjalne zalecenia na temat sposobu jej prowadzenia. Przede wszystkim obserwator powinien znajdować się na poziomie ziemi albo na morzu, a na lądzie nie powinno być przeszkód w obserwacji takich jak gęsta zabudowa czy pasma górskie. Powietrze powinno być czyste, bez zakłóceń typu mgła, zamglenie czy dym. Słońce powinno być dostatecznie wysoko, żeby można było określać jasność i kolor chmur i wreszcie same chmury powinny być na tyle wysoko nad horyzontem, żeby można było pominąć efekt perspektywy. Oczywiście te zasady powinny być adoptowane także do innych warunków obserwacji jak choćby obserwacje z lecącego samolotu czy podczas pełni księżyca. Przy okazji należało by zaznaczyć, że chmury powinno się obserwować przez cały czas, ponieważ przez cały czas zmieniają one swój kształt i odległość od obserwatora. Generalnie mamy dwie podstawowe odmiany chmur: kłębiaste i warstwowe. Ten podział przewija się przez wszystkie piętra. Następna strona –> chmury piętra niskiego Na kolejnych stronach także CHMURY PIĘTRA ŚREDNIEGO oraz CHMURY WYSOKIE (Visited 1 539 times, 1 visits today) Tagi: atlas chmur, cirrocumulus, cirrostratus, cirrus, cumulonimbus, meteorologia, nimbostratus, pogoda dla żeglarzy Last modified: 7 września, 2021
Inaczej jest w przypadku pary wodnej: ze względu na to, że wraz ze spadkiem temperatury w atmosferze para wodna dość szybko zaczyna się skraplać, gaz ten występuje głównie blisko powierzchni Ziemi. Choć przy powierzchni cząsteczki pary wodnej stanowią 1–4% atmosfery, średnia zawartość pary wodnej w atmosferze to już tylko 0,4%
Kategorie: CHMURYpółkula południowapółkula północnaZiemiarównikMeteorologianauka Nowe badania przeprowadzone przez międzynarodowy zespół naukowców z Niemiec, Chile i Cypru umożliwiły wyjaśnienie obserwowanych od dawna różnic w zachowaniu chmur stratus na różnych półkulach. Okazało się, że wznoszące się prądy ciepłego powietrza mają decydujący wpływ na ich zachowanie, co w rzeczywistości prowadzi do kondensacji i powstawania chmur. Na półkuli południowej chmury mają inny kształt i mają znacznie niższy współczynnik odbicia w porównaniu z chmurami na półkuli północnej. Artykuł na ten temat został opublikowany w czasopiśmie Atmospheric Chemistry and Physics. W badaniu wykorzystano trzyletnie dane za lata 2018-2021 zebrane w ramach projektu DACAPO-PESO. Stężenie kryształków lodu w chmurach oszacowano za pomocą laserowego lidaru na podczerwień, a obłoki monitorowano za pomocą radaru mikrofalowego. Uzyskane dane obejmują obszary wokół Lipska w Niemczech, Limassol na Cyprze i Punta Arenas w Chile – w tym ostatnim przypadku był to najszerszy zbiór danych o aerozolach, chmurach i opadach, jakie kiedykolwiek zebrano w tym regionie. Większość półkuli południowej jest oceaniczna, a nie lądowa, więc powietrze jest ogólnie czystsze, z mniejszą liczbą cząstek aerozolu, wokół których mogą tworzyć się kropelki i kryształy chmur, tworząc jaśniejsze chmury. Chmury na średnich szerokościach geograficznych półkuli południowej zawierają znacznie mniej kryształków lodu i więcej ciekłej wody w tych samych temperaturach. Oznacza to, że mają inny wpływ na przechodzące przez nie światło słoneczne, a także na promieniowanie cieplne emitowane z powierzchni Ziemi, niż te na północy. Badanie wykazało, że różnice były najbardziej widoczne w wolnej troposferze na dużych wysokościach, gdzie warstwy powietrza są mniej narażone na lokalne zanieczyszczenia. W temperaturach od –24°C do –8°C chmury nad Punta Arenas tworzyły lód średnio o 10-40% rzadziej niż chmury nad Lipskiem. Ocena: 982 odsłony
Woda, która znajduje się na powierzchni Ziemi, paruje. Ciepłe, wilgotne powietrze unosi się i ochładza, a w efekcie ulega skropleniu. Z pary wodnej powstają chmury - cząsteczki pary wodnej
Chmury to zjawiska meteorologiczne, które uczestniczą na trzy sposoby w globalnym ociepleniu. Pierwsze badania naukowe nie dawały pewnych informacji, że klimat bardziej ociepla się z powodu dodatkowego sprzężenia zwrotnego – chmur. Jednak następne badania wskazują, że klimat staje się cieplejszy nie tylko dzięki rosnącym w astronomicznym tempie emisjom gazów cieplarnianych, zwłaszcza dwutlenku węgla, ale i coraz intensywniejszym pokrywom chmurowym. Rysunek 1. Kompozycja zdjęć z amerykańskich (GOES) i europejskich (METEOSAT) satelitów geostacjonarnych (źródło). Copyright: EUMETSAT 2016. Chmury niskie Gdyby na Ziemi istniały tylko chmury w najniższych warstwach atmosfery, to by sama planeta mocno ochładzała się. Być może energia cieplna w podczerwieni blokowana przez gazy cieplarniane antropogenicznego pochodzenia nie wzrastałyby w tak szybkim tempie jak to się dzieje dziś przy obecności dodatkowych chmur wysokich. W chmurach niskich, dokładnie w kłębiastych cumulusach i w warstwowych stratusach gromadzą się gęsto rozmieszczone kropelki wody. W dziennej porze chmury te mają znacznie silniejsze własności odbijania promieni słonecznych niż ich pochłaniania. Natomiast w nocy efekt cieplarniany jest silniejszy. Ale wówczas to promieniowanie w podczerwieni emitowane z Ziemi jest skutecznie blokowane przez gazy cieplarniane. W sumie można oszacować, że chmury niskie w dzień odbijają ok. 80-90 %, a pochłaniają 10-20 % promieni słonecznych. A w nocy przepuszczają w kosmos 20-30 % promieni w podczerwieni, a pochłaniają 70-80 %. Efekt sumaryczny dla chmur niskich jest taki, że ogólnie jest silniejsze odbijanie promieni słonecznych w dzień od pochłaniania nocnego. A więc, względem tego typu pokryw chmurowych, procesy zachodzą na korzyść ochładzania klimatu. W nieodległej przeszłości, jakieś 30-40 lat temu, z pewnością w atmosferze tworzyło się więcej chmur niskich niż wysokich. Dokładnie nie wiadomo, czy przyczyną mogło być większe wówczas zapylenie atmosfery. Emitowane na ogromną skalę związki siarki mają własności silnie odbijające promienie słoneczne, tak więc dość skutecznie chłodziły świat, zwłaszcza uprzemysłowiony w tamtych latach. Było to tzw. globalne zapylenie atmosfery. Jednak problem globalnego ocieplenia był już wówczas poruszony, ale nie było jeszcze eksperymentalnych dowodów, choć efekt cieplarniany i czułość klimatu na podwojenie koncentracji dwutlenku węgla (od początku rewolucji przemysłowej) były już dokładnie zbadane ponad 100 lat temu. Wszelkie luki naukowe, czyli niższą ilość dowodów niż dziś na rzecz antropogenicznego globalnego ocieplenia, jeszcze 15-20 lat temu, wykorzystali min. naukowcy negujący zmiany klimatu wywołane przez człowieka, tacy jak Roy Spencer i Richard Lindzen. Pierwszy był pracownikiem NASA. Zakwestionował on publicznie zgodność naukowców badających klimat co do antropogenicznego globalnego ocieplenia. Natomiast drugi jest fizykiem atmosfery i profesorem meteorologii w MIT (Massachusetts of Technology). Wcześniej napisał 7 rozdział do III raportu IPCC. Zaproponowali oni tzw. hipotezę tęczówki, według której ocieplanie klimatu miałoby mieć wpływ na to, że spadek pokrycia nieba chmurami wysokimi na rzecz niskich wpłynąłby jednocześnie na spadek ilości gazów cieplarnianych, emitowanych do atmosfery przez człowieka. Ta hipoteza została jednak obalona już ponad 10 lat temu. Dwie niezależne grupy naukowców prowadzonych przez Axela Lauera i in. 2010 oraz przez Amy’ego C. Clementa i in. 2009 podjęły analizę zmian zachmurzenia w rejonie równikowym i podzwrotnikowym, przy okazji wykorzystując obserwacje meteorologiczne z pokładów statków, pomiary satelitarne oraz modele klimatu. Wyciągnięte wnioski z obu prac były bardzo podobne: sprzężenie zwrotne mające związek z pokrywami chmur jest w tych obszarach dodatnie, co oznacza dodatkowy wzrost temperatur. Dodatkowo praca Andrew E. Desslera i in. z 2010 r. wykazała, że badania satelitarne pokazały, że sprzężenie ujemne w związku z chmurami występuje, ale bardzo nieznacznie. Efekt jest wyraźnie dodatni. Definitywnie to przekreśliło twierdzenie negacjonistów klimatycznych, że znaczne zachmurzenie może wpłynąć na zahamowanie ocieplania się planety. Rysunek 2. Rola chmur w klimacie (w uproszczeniu) - chmury wysokie (lewa część rysunku) przepuszczają większość padającego na nie promieniowania słonecznego (żółte strzałki), ale zatrzymują wypromieniowywane przez Ziemię promieniowanie podczerwone (czerwone strzałki), powodując wzrost średnich temperatur, - chmury niskie (prawa część rysunku) silnie rozpraszają promieniowanie słoneczne, powodując spadek średnich temperatur powierzchni Ziemi. (źródło) Chmury wysokie Gdyby na Ziemi istniały tylko chmury w najwyższych warstwach atmosfery, to by nasza planeta jeszcze silniej nagrzewałaby się. A energia cieplna w podczerwieni blokowana przez gazy cieplarniane emitowane przez działalność ludzką wzrastałyby w zawrotnie szybkim tempie. Na szczęście istnieją schładzające niskie chmury, które zwalniają ten przyrost globalnej temperatury i koncentracji dwutlenku węgla w atmosferze i w oceanach. W wysokich chmurach, dokładnie pierzastych cirrusach, są rzadko rozmieszczone kryształki lodowe. Zarówno w dzień, jak i w nocy mają one tendencje do większego pochłaniania niż przepuszczania w kosmos promieniowania w podczerwieni wyemitowanego z Ziemi. Warto też zauważyć, że w przeciwieństwie do chmur niskich są niemal przezroczyste dla promieni słonecznych. W sumie można stwierdzić, że efekt sumaryczny dla chmur wysokich jest więc taki, że ogólnie jest silniejsze pochłanianie promieni cieplnych niż ich przepuszczanie w przestrzeń kosmiczną. Jest to właśnie zauważalne przy pomiarach dwóch warstw atmosfery ziemskiej: troposfery i stratosfery. Ta pierwsza jest coraz cieplejsza, a ta druga coraz chłodniejsza. Co dokładnie mierzą i monitorują satelity na orbitach okołoziemskich. Ogólnie rzecz ujmując, w chmurach wysokich procesy zachodzą na korzyść ocieplania klimatu. Naukowcy z Uniwersytetu Nowej Południowej Walii pod przewodnictwem profesora Stevena Sherwooda i in., 2014 zbadali korelacje pomiędzy tworzeniem się chmur a procesami mieszania się powietrza pochodzącego z różnych warstw (pięter chmur) atmosfery. Kiedy intensywnie zaczyna woda parować z powierzchni Ziemi, jej późniejszy los jest w dużym stopniu zależny od obecności i siły prądów powietrznych, które mogą wynieść ją nawet na wysokość kilkunastu kilometrów. Jest to tak zwana głęboka konwekcja, dzięki której powstają mocno rozbudowane w pionie kłębiaste chmury, z których wydzielają się intensywne opady. W wyniku czego znaczna większość wody wraca z powrotem na powierzchnię Ziemi oraz do przylegającej do niej tak zwanej „warstwy granicznej atmosfery”. W dobie globalnego ocieplenia tworzenie się tego typu chmur, zwłaszcza w obszarach intensywnej wilgotności powietrza, jest coraz częstsze. Jednak, gdy prądy powietrzne nie są zbyt silne, wówczas sięgają tylko do wysokości kilku kilometrów, a powietrze, które jest przez nie niesione rozpływa się mieszając z ośrodkiem atmosferycznym. Ale jeśli nawet tworzą się chmury na tych wysokościach, to i tak dają bardzo słabe opady deszczu. Występuje także efekt taki, że część pary wodnej zostaje w tzw. warstwie granicznej atmosfery, a część pary wodnej unosi się wyżej. Mieszanie zapobiega powstawaniu chmur pionowych głębokokonwekcyjnych, co też sprzyja warunkom takim, w których na wysokości do 2 km jest coraz mniej chmur niskich, a jest coraz więcej na wysokości 2-8 km chmur średnich i wysokich. Ma to wpływ taki, że para wodna jest unoszona do coraz wyższych wysokości, gdzie jest coraz silniejszy efekt ogrzewający planetę. Tzn. średnie, a zwłaszcza wysokie chmury mają tendencje do silniejszego gromadzenia energii cieplnej. Natomiast w najniższych warstwach troposfery, czyli w warstwie granicznej atmosfery zachodzą procesy wysuszające ją coraz silniej. Inaczej mówiąc jest tam coraz mniej chmur, które mogłyby dawać silniejszy efekt schładzający Ziemię. Rysunek 3. Wykształcenie się głębokiej (8-16 km, zależnie od szerokości geograficznej) konwekcji oznacza, że para wodna zabierana z warstwy granicznej atmosfery (poniżej ok. 2 km) i zużywana do tworzenia chmury powraca na powierzchnię Ziemi w postaci opadów. Mieszanie może zapobiegać powstawaniu rozbudowanych w pionie chmur a w rezultacie – opadów. W efekcie w „wysuszonej” warstwie granicznej chmur ubywa a przybywa chmur na piętrach średnich i wysokich (2-8 km). (źródło) Podsumowując opisane procesy można stwierdzić krótko. Planeta Ziemia nagrzewa się coraz bardziej. Aby para wodna mogła się skondensować, tak by mogły powstać chmury w niskich warstwach atmosfery ziemskiej, potrzebuje już wyższych wysokości niż 0-2 km. A na wyższych wysokościach gdy tworzą się w końcu chmury w procesie kondensacji pary wodnej, to dają one silny efekt cieplarniany. W pracy badawczej Stevena C. Sherwooda i in. 2014, modele klimatu, które odwzorowują procesy atmosferyczne, czyli tzw. płytkie mieszanie (prawdopodobnie na pograniczu warstwy granicznej atmosfery i nad nią leżącej wyższej warstwy troposfery) odznaczają się wyższą czułością klimatyczną. A wyższa czułość klimatyczna to nic innego jak zwiększony wzrost temperatury przy powierzchni Ziemi w odpowiedzi na podwojenie koncentracji dwutlenku węgla w powietrzu atmosferycznym. Według V raportu IPCC czułość klimatu mieści się w przedziale 1,5-4,5 stopni Celsjusza. Sherwood jednak uważa, że jeśli mieszanie powietrza będzie coraz silniej wpływać na zaburzenia rozkładu chmur na poszczególnych piętrach atmosfery, to efekt cieplarniany będzie jeszcze bardziej się nasilał potęgując globalne ocieplenie. Tak więc, ten przedział temperatur zaproponowany przez IPCC w 2014 r. raczej trzeba przesunąć zdecydowanie w prawą stronę. Według Sherwooda i jego zespołu badawczego, optymalnie czułość klimatyczna wyniesie powyżej 3°C. Chmury sięgają coraz wyżej i przesuwają się w stronę biegunów Dotychczas badania chmur i ich zmienność na poszczególnych piętrach atmosfery opierały się raczej tylko na modelowaniu numerycznym. Symulacje chmur w skali planetarnej są bardzo trudne, gdyż większość chmur często jest za mała aby mogła być lepiej zaprezentowana w modelach systemu klimatycznego Ziemi. Jednak najnowsze badania chmur ukazują nam nowe oblicze chmur, które potęgują narastanie globalnego ocieplenia. Procesy te zachodzą zarówno w pionie, jak i w poziomie troposfery. W pracy opublikowanej w Nature przez Joela R. Norrisa i in. w 2016 r., potwierdzona została zgodność badania chmur pomiędzy modelowaniem numerycznym a badaniem satelitarnym. Norris dokonał głębokiej analizy zestawów pomiarów z lat 1983-2009. I zaobserwował dokładnie ten sam przebieg dynamiki chmur w systemie klimatycznym, zarówno w symulacjach komputerowych, jak i w obliczeniach satelitarnych. To znaczy, zauważył korelacje systematycznego ogrzewania się Ziemi przerwanego dwoma większymi wybuchami wulkanicznymi. El Chichon w 1982 r. i Pinatubo w 1991 r. ze zmniejszaniem się lub zwiększaniem pokryw chmurowych. Czyli, ze zmniejszaniem się chmur w atmosferze naszej planety podczas niezaburzonego wzrostu antropogenicznych emisji gazów cieplarnianych i z krótkotrwałym (najwyżej kilkuletnim) zwiększaniem się chmur podczas silnych erupcji wulkanicznych. Rysunek 4. Rejony, w których zaobserwowano zwiększanie się (kolor niebieski) i zmniejszanie (kolor brązowy) pokrywy chmurowej pomiędzy latami osiemdziesiątymi a pierwszą dekadą XXI wieku. Na górnym panelu wyniki pomiarów satelitarnych a na dolnym - modelowania klimatu. (Joel R. Norris i in., 2016) Na Ziemi nastąpiła w pewnym sensie roszada rozkładu chmur. Tam gdzie powinny być, nie ma ich. I na odwrót. Obecnie jest zauważalny drastyczny spadek ilości chmur nad oceanami w szerokościach umiarkowanych, zwłaszcza nad północnym Atlantykiem oraz w części południowo-wschodniej Oceanu Indyjskiego pomiędzy Australią a Archipelagiem Malajskim. Natomiast przyrost liczby chmur nastąpił w w wielu obszarach międzyzwrotnikowych, zwłaszcza w części północno-zachodniej Oceanu Spokojnego pomiędzy Archipelagiem Malajskim a tropikalną Wschodnią Azją oraz na wyższych szerokościach geograficznych, od borealnych do polarnych. Ten trend będzie utrzymywał się pod warunkiem, że nie nastąpią jakieś potężne erupcje wulkaniczne. Na coraz cieplejszej Ziemi satelity zaobserwowały (zgodnie z modelami numerycznymi) coraz częstsze wędrówki niżów atmosferycznych z szerokości geograficznych klimatu umiarkowanego ku szerokościom polarnym. Wraz z napływem niskich kłębiastych i warstwowych chmur masy powietrza atmosferycznego niosą z sobą ku biegunom również ogromne ilości pary wodnej. W Arktyce para wodna kondensując przekazuje jej lodom ogromną ilość cieplnej energii utajonej. Tak więc, chmury coraz bardziej przyczyniają się do topnienia lodu arktycznego, co jest w 2015 roku nowym odkryciem naukowym. Satelity również zanotowały (zgodnie z modelami numerycznymi) coraz większy przyrost liczby chmur na najwyższych wysokościach troposfery. Norris ze swym zespołem badawczym zauważył, że im wyżej chmury znajdują się, tym coraz grubsza robi się izolacja cieplna przepuszczająca coraz mniej energii cieplnej w podczerwieni. Czułość klimatu, tak jak 2 lata temu u Sherwooda i in. 2014, wyraźnie wskazuje na liczbę 3 stopni Celsjusza w odpowiedzi na podwojenie koncentracji dwutlenku węgla. W dzisiejszych czasach coraz mocniej zaburzony rozkład chmur, związany z przemieszczaniem się ich ku biegunom i najwyższym warstwom troposfery, ma bezpośredni wpływ na coraz większy wzrost temperatury przy powierzchni Ziemi na wszystkich szerokościach geograficznych oraz pośredni wpływ na poszerzanie się stref subtropikalnych związanych z występowaniem coraz uciążliwszych susz. Już dziś najbardziej ekstremalnie te zjawiska zachodzą pośród mieszkańców Bliskiego Wschodu, Afryki Północnej i Afryki Południowej czy Kalifornii. Wszystkie te rejony coraz mocniej są dotknięte niedoborami wody i degradacją terenów uprawnych. Sztuczne chmury. Sztuczne chmury to nic innego jak smugi kondensacyjne, które za sobą zostawiają samoloty na dużych wysokościach. Często pojawiają się też tam, gdzie nigdzie nie powstałyby naturalne chmury. Sumarycznie smugi kondensacyjne zwiększają pokrywę chmur wysokich. I to aż o ok. 11 % (Ulrike Burkhardt i Bernd Karcher, 2011). Gdy sztuczne chmury zleją się z naturalnymi trudno je później odróżnić (John Seifeld, 1998). Zdjęcie. Utrzymujące się smugi kondensacyjne. Zdjęcie zamieszczamy dzięki uprzejmości NASA. Podobnie jak naturalne pierzaste chmury, sztuczne chmury, zarówno odbijają promienie słoneczne w kosmos (efekt schładzający), jak i pochłaniają promienie ziemskie (efekt ogrzewający). I tu zdecydowanie przeważa efekt ocieplający. Tak więc, chmury pochodzenia lotniczego mają znaczący wpływ na pogłębienie się wymuszenia radiacyjnego w całkowitym bilansie energetycznym Ziemi. Wynosi ono 37,5 mW/m2 (Ulrike Burkhardt i Bernd Karcher, 2011). Nie jest to tak dużo, ale jednak. W porównaniu: Według V raportu IPCC, tylko w 2011 r. wymuszenie radiacyjne mające związek z ludzką działalnością (emisje gazów cieplarnianych, emisje aerozoli, zmiany użytkowania terenu) wyniosło ok. 2290 mW/m2. W ocieplającym się świecie chmury są coraz wyżej, zarówno obu biegunów, jak i najwyższych warstw troposfery. Sumarycznie spada ich liczba w całym systemie klimatycznym. Można sobie wyobrazić, co się będzie działo, gdy para wodna będzie chciała wznieść się jeszcze wyżej. Może nastąpić maksymalne rozregulowanie systemu klimatycznego. Dopóki jednak istnieje para wodna, dopóty istnieją chmury i życie na Ziemi.
Zjawiska elektryczne w atmosferze są bezpośrednio związane z jonizacją powietrza, tj. obecnością jonów – atomów (lub grup atomów) obdarzonych ładunkiem elektrycznym (naładowanych dodatnio lub ujemnie). Ilość jonów, a zatem i przewodność elektryczna atmosfery, zmienia się wraz z wysokością n.p.m. Przewodnictwo w jonosferze
Kategorie: MeteorologiaCHMURYchmuraAustraliaciekawostki Nietypowe zdarzenie miało miejsce w okolicy miejscowości Roma w australijskim stanie Queensland. Jeden z farmerów, Peter Thompson, nagrał coś, co wygląda na chmurę deszczową zstępująca do poziomu gruntu. Matka natura potrafi zadziwić. To, co widać na zdjęciach i nagraniach dostępnych w Internecie wygląda dosłownie jak deszczowa bomba, która nagle spadła na powierzchnię. Całe zjawisko rozpoczęło się bardzo szybko i chmura wybrzuszyła się, po czym dotknęła ziemi w mniej niż dwie minuty. Według australijskich meteorologów takie niezwykłe fenomeny zdarzają się i nazywają to "microbursts". Jednak naoczni świadkowie twierdzą, że nigdy nie widzieli czegoś podobnego. Ocena: 10843 odsłony